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ABSTRACT: Nof and Paldor (Safety Sci 2010;48:607–14) suggested that resonance in the air pockets in the Indian Spring cavern might have
contributed to the 1991 collapse. Here, we extend the resonance theory to one pocket in the cavern and a very broad basin that serves as the other
branch of the U-tube. Our methodology is to apply familiar fluid dynamics principles to the situation that occurred in the cave. We did so on the
basis of our interviews with four of the five surviving cave divers. We dissected their testimonies to arrive at a physically plausible scenario deter-
mined on the basis of a fluid dynamics application to the natural flow in the cave, the flow induced by the compressed air released by the divers and
the mudslide. We found that there was a temporary flow blocking during the collapse, but no total flow reversal within the cave.
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The Indian Spring cave is situated in the panhandle in north
Florida (Figs 1 and 2). Like many other submerged caves in the
region, it was explored primarily in 1980s and 1990s. A bizarre
accident occurred in 1991 when the cave collapsed while two
divers were still in it, causing the drowning of a very experienced
cave diver, Parker Turner. To date, this is the only cave-diving
accident in cave-diving history (of several hundred), which is said
to occur because of natural causes rather than diver error.

Here, we follow up on the earlier article of Nof and Paldor (1),
where it has been suggested for the first time that resonance result-
ing from air ⁄ gas exhaled by open circuit divers (at regular inter-
vals) caused the tragic cave collapse that trapped Parker Turner
inside the cave, causing him to drown. The article left a number of
important questions unanswered, and the purpose of the present
work is to place the resonance proposition on a more solid ground
by answering these, still open, questions.

Issues at Hand

The first issue has to do with the air tubes (pockets). In the ori-
ginal article, the pockets were not specifically identified. Here, not
only do we identify the specific main pocket (Figs 3 and 4), but
we also show that the basin can act as one of the U-tube arms,
implying that only one pocket was actually needed to be identified
within the cavern for the resonance to be active (Figs 5 and 6). In

this scenario, the oscillations are now between the open basin and
the pocket identified within the cavern rather than between two
adjacent pockets within a cavern.

The second, and perhaps more important, issue that is addressed
here is how the proposed physics fits what has been actually
observed by the cave divers present in the cavern during the acci-
dent. Previously, we were not in a position to speak to those who
witnessed the event directly because, understandably, without see-
ing an article that already appeared in the scientific literature,
they were very reluctant to talk to us. In sharp contrast, after the
appearance of that article, the divers provided a wealth of useful
information, which helped shed more light on the processes in
question. Much of the present article is based on the information
that they provided and on questions raised by that information.

For instance, did the collapse cause an actual reversal of the
flow within the cave as originally claimed in some of the blogs?
We shall argue that what was actually observed was most likely
only a partial reversal (i.e., a reversal of the flow near the bottom),
not a complete reversal in the entire water column. Similarly, sur-
face support personnel claim that the water level in the basin
dropped 0.30 m in 10 min. Was that because water flowed back
into the cave? We shall suggest that this drop was simply because
the spring flow was temporarily blocked, so the water exiting the
basin downstream (Fig. 3) had no compensating inflow coming in
upstream so it drained the basin fairly quickly.

Why was sediment typical for the cavern zone found 150–200 m
into the cave if there was no flow reversal? We shall argue that
this is because a mudslide flow is very similar to the familiar lock-
exchange problem—while the heavy muddy water flows one way
(downhill), there is a compensating flow above (of the clear water)
flowing in the opposite way, so there is no net exchange across a
complete cross-section.

For clarity, we define four different stages of the collapse
process (Fig. 4). During the first (or initial) stage, a resonance is
established in the pocket, the pressure rises uncontrollably, and the
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limestone in the immediate vicinity of the pocket breaks. During
the second stage, broken debris fell on the slope below, which
causes the mud to slide, creating an initial cavity in the sloping bot-
tom. In the third (or intermediate) stage, the sediment initially con-
tained in the cavity establishes a lens-like turbidity current that
rushes quickly downstream, blocking most of the restriction shortly
afterward. In the fourth (terminal) stage, the smaller lens-like tur-
bidity current (whose top was effectively ‘‘sliced off’’ by the
restriction) propagates more slowly downhill beyond the restriction.

The Event as Perceived by the Cave Divers

The particular dive in question was one of the many exploratory
cave dives conducted by various groups (during the last 50 years)

in the Wakulla County area (Fig. 1). It was executed by what, at
the time (1980s and 1990s), was probably the most organized,
sophisticated, and accomplished cave-diving group in the world,
the Woodville Karst Plain Project (WKPP). They set several world
cave-diving records in terms of penetration distances and times
spent underwater, mapping submerged caves that are roughly
15 km long, staying at depths of 60–100 m for nearly 4 h (on one
dive), and decompressing for as much as 10 h or more.

There were three teams in the cave and cavern system on the
day in question. One team (Gavin and Parker) did the deep and
long exploration dive in the cave, while the second team (George
Irvine and Lamar English, divers A and B) did a scooter dive. The
third team consisted of Bill Main and Alexander Kaye (divers C

FIG. 3—A schematic long vertical cross-section of the cave extending all
the way from the entrance to the Hall of Greene Giants situated a few hun-
dred meters within the cave.

FIG. 4—A schematic short vertical cross-section of the cave extending
from the entrance to a short distance beyond the restriction (politically
incorrect named the Squaws Restriction).

FIG. 1—A map of the southeastern United States showing the location of
the water-filled Indian Spring cave. The cave spring water, which flows at a
speed � O (0.1 m ⁄ sec) within the cave, ultimately ends up in the spring
pool which eventually empties into the Wakulla river. Figure adapted Nof
and Paldor (1).

FIG. 2—A schematic three-dimensional view of the Indian Spring cave.
The cave walls, ceiling, and floor are all shown with the red envelope.
Limestone is outside that envelope whereas water occupies the inside of the
envelop (the cave). Our proposed collapse mechanism involves resonance in
the region downstream to the Squaws Restriction. That resonance increased
the pressure in divers-induced air pockets (in the cavern region) beyond
the level that which the cavern’s ceiling could sustain. As a result, part of
the ceiling fell on the steeply sloped sediment, which, in turn, slid and
blocked the Squaws Restriction (see Figs 3–5). Adapted from Nof and
Paldor (1).

NOF • FORENSIC FLUID DYNAMICS AND THE INDIAN SPRING 933



and D). Both the second and the third teams were already doing
their decompression stop in the cavern when the first team, which
was the last to exit, encountered the avalanche within the cave. We
spoke to all the divers mentioned above with the exception of
Gavin who indirectly indicated that he is not willing to speak to us.

Evidently, as part of his decompression, diver A stuck his head
in one of the air ⁄ gas pockets in the cavern at a depth of 5–7 m.
This is a common practice among cave divers who do it routinely
either to get warm or to blow their noses and clear their sinuses.
His scooter was not with him at the time as they already completed
the scooter portion of the dive and had already tied their scooters
to the guideline below. After a few minutes, while his head was
still in the pocket, the avalanche started from the very same pocket
that he was in. As the second step in the process, broken rock and
debris fell from the ceiling on the steep slope below, which, in
turn, developed into a mudslide that resulted in the blockage of the
first downstream restriction (politically incorrect named the
‘‘Squaws Restriction’’).

In contrast to common anecdotes implying the involvement of a
scooter (peculiarly persisting among cave divers for two decades),

no scooter was involved in the collapse as both scooters were tied
to the line below the divers. Note, however, that, at some point,
diver A thought that his scooter, which he left tied to the line
below his decompression position, was turned on accidentally and
runaway, but it turned out that this was not the case. Anecdotal
claims that a seismic event might have contributed to the collapse
are also unsubstantiated. According to the seismic records (http://
earthquake.usgs.gov/earthquakes/eqarchives/epic/epic_global.php), a
total of 137 quakes were recorded worldwide from November 16
to November 18, 1991, but none was even close to Florida.

Evidently, surface personnel witnessed a sudden drop of the
water level in the basin (0.5 m within 10 min or so) and swirling
water above the cave entrance and interpreted these to mean that
the flow in the cave had totally reversed its direction. Technically,
this is in general feasible, and indeed, Lake Jackson, situated in
northwest Tallahassee (Fig. 1) about 30 km to the north of the cave
(and within the same karst aquifer), has occasionally disappeared
(almost overnight) during the last 50 years. Presumably, an under-
ground passage opened up draining the lake. (In most occasions,
the lake came back after several years, but its last disappearance in
the late 1980s has not seen a reversal.)

While such a sudden opening of a previously closed under-
ground passage is technically possible, it is extremely unlikely that
it would happen just when the cave divers happened to be within
the cave. We employ here the same logic that we used earlier—it
is unlikely that a cave collapse just accidentally happened to occur
while divers were in the cave. A much more likely scenario is that
the sudden drop of water level in the basin is simply because the
cave exit ⁄ entrance (exit to the water, entrance to the divers) was
temporarily blocked (so there was no flow out of it), whereas the
downstream exit of the basin remained opened, quickly draining
the basin. Taking the average volume flux out of the cave to be
roughly 5 m3 ⁄ sec and the surface area of the basin to be
100 · 100 m2, we found that the water level would drop 0.5 m in
just 17 min if the feeding tunnel were to be abruptly shut down.
As we shall see later, we attribute the observed swirl to a horizon-
tal vortex that initially formed above the cave entrance when the
mudslide just occurred.

FIG. 5—(a) The position of the pocket (black solid circle) relative to the
basin and the restriction. Numbers with a bar above them indicate the depth
of the cave ceiling. (b) Side view is schematic, it is not drawn to scale.

FIG. 6—Schematic diagram of the U-tube model with one narrow (right)
and one thick (left) arm. The thick (uncapped) arm corresponds to the basin
whereas the thin (capped) arm corresponds to the pocket.
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This study is organized as follows. In the next section, we pres-
ent the basin–pocket resonance model, and in the third section, we
present the mudslide calculation. The fourth section addresses the
resulting turbidity current issue, and the fifth addresses the vortex
in the open ocean. The results are summarized in the Discussion.
There is some, but very limited, overlap (particularly in the figures)
between the present article and the Nof and Paldor’s (1) article,
because an attempt has been made to make the present study self-
contained.

Methods—The Basin–Pocket Resonance Model

Consider again Fig. 4 and the U-tube shown in Fig. 6, which
represents the situation shown in Fig. 5 in a simplified manner. In
contrast to the Nof and Paldor’s study (1) U-tube problem (see their
Fig. 6), our new resonant U-tube configuration contains only one
narrow vertical tube capped at its top (shown on the right of our
Fig. 6). The left tube in Nof and Paldor’s study (1) is represented
here by the broad basin, which is, of course, open on its top
(Fig. 6). The narrow tube on the right represents the pocket in the
upper regions of the cavern where the compressed air ⁄ gas accumu-
lates (see Fig. 5). Its diameter is Da, the corresponding cross-sec-
tional area is Aa, total length is Lv, and the lengths of its
components that are filled with air and water are Lva and Lvw,
respectively (see the Appendix for explanation of the symbols).
The thick horizontal tube (below it) represents the cave (or cavern)
and has a diameter Dw, much larger than the vertical tube diameter
Da, and a length Lhw. The tubes diameter ratio (Da ⁄ Dw = 1) repre-
sents the actual situation in nature, but, as it turns out, it has no
bearing on the calculations presented here. The corresponding
cross-sectional area of the horizontal tube is Aw, and its wet length
is Lhw. The excess pressure (i.e., the pressure above the atmo-
spheric pressure) in the air-filled component depends on the cave’s
depth and is denoted by P̂.

This new U-tube model is adopted as a means of representing
resonating flows that are superimposed on the usual one-dimen-
sional (horizontal) flow in the cave. The modeled resonating
flow, which is induced by the air ⁄ gas pocket, is limited to the
region between the pocket and the basin, so the lower part of
the modeled tube is taken to be blocked on two sides, forming
a U-tube with one sealed vertical component (pocket) and one
open (basin).

When the water level in the right vertical tube (shown in Fig. 6)
is elevated an arbitrary infinitesimal distance g above its neutral
position, there are two restoring forces. The first is the familiar
weight of the displaced water qwgAag, where qw is the water den-
sity. The second is the new not-so-familiar force because of the
incremental increased pressure in the air-filled section, P̂g=Lva

(derived from the linear gas law, P̂V̂ = const., where V̂ is the vol-
ume of the air pocket). Fortunately, this new force (i.e., the incre-
mental increased pressure times the cross-sectional area Aa) turns
out to be linear. In the absence of friction (i.e., the inviscid limit),
the sum of these two forces causes the fluid to accelerate (in both
the horizontal and vertical tubes as well as the infinitely large
basin) in response to the initial perturbation (e.g., increase) of the
water level in the right vertical tube.

In the narrow vertical tube containing the gas, the (time-depen-
dent) acceleration is d2g ⁄ dt2. Conservation of mass implies that in
both the horizontal tube and the vertical broad-basin tube, the
acceleration is much smaller, (d2g ⁄dt2) Aa ⁄ Awc and (d2g ⁄dt2)
Aa ⁄ Awb, where Awc is the vertical cross-sectional area of the cave
and Awb is the horizontal cross-sectional area of the basin. This is
because the velocity in these sections of the tube is also much

smaller [(dg ⁄dt) Aa ⁄ Awc; (dg ⁄ dt) Aa ⁄ Awb]. Assuming that the fluid
velocities are uniform within each cross-section and neglecting the
corners of the U-tube, the inviscid governing equation (F = ma)
can be written as

qwAaðLvw þ Dþ LhwÞ
d2g
dt2
þ ðqwgAa þ P̂Aa=LvaÞ g

¼ C1Cosxt þ C2Sinxt
ð1Þ

where D is the basin depth (Fig. 6). Here, the first term on the left-
hand side corresponds to the familiar acceleration of the water
times the mass in both the narrow and thick segments of the U-
tube. Interestingly, it turns out to be independent of the cross-sec-
tional areas of the thick horizontal tube representing the cave and
the thick and short vertical tube representing the basin. This is
because, although the cross-sectional areas are large in both of
these sections (Avw; Ahw), the velocities there, Aa

Awc
ðdg=dtÞ and

Aa
Awb
ðdg=dtÞ, are proportionally smaller so they compensates for the

increase in mass associated with the increase in area (this implies
the counterintuitive result that the ratio of the tubes diameters does
not enter the problem). The second term is the restoring force,
which now consists of both the familiar gravitational pull and the
new, not-previously-discussed force, associated with the compressed
air ⁄ gas in the pockets. Luckily, this new term is linear. The terms
on the right-hand side represent the (known) periodic forcing asso-
ciated with divers releasing air that further accumulates in the
closed sections of the tube. (Given the concave nature of the cave’s
ceiling, this additional air ⁄gas does not have to be released directly
into the air ⁄gas chambers. For most caves, air released nearby will
slide along the slanted ceiling and will ultimately reach the highest
point representing the top of the tubes.) When the terms on the
right-hand side are zero, the solution of Eq. 1 is a harmonic oscilla-
tions solution. We shall refer to this state as the ‘‘free state’’ as it is
not subject to any outside forcing. Interestingly, the inclusion of the
new enclosed (air-pressurized) sections of the tube on top does not
change the mathematical nature of this solution. All they do is to
make the restoring force larger.

Assuming an inviscid solution of the form g = Am1Cosxt + Am2

sinxt, we obtain from Eq. 1

Am1 ¼ C1=ðb� x2aÞ; Am2 ¼ C2=ðb� x2aÞ

where a ¼ qwAaðDþ Lvw þ LhwÞ and b ¼ qwgAa þ P̂Aa=Lva:

We see that regardless of the choices for the constants C1 and
C2 (representing the strength of the forcing), the amplitudes Am1

and Am2 go to infinity (i.e., resonance) when x2 = b ⁄a. As in other
resonance cases, this frequency is also the frequency of the natural
oscillations, that is, the frequency of the free state (C1 = C2 = 0).
Just like a swing is forced higher and higher when pushed at the
same frequency as its natural oscillation frequency, so are the oscil-
lations in the U-tube.

Accordingly, the period of the forcing leading to a resonance is
found to be

T ¼ 2p

fg=ðDþ Lvw þ LhwÞ þ P̂=qwLvaðDþ Lvw þ LhwÞg1=2
ð2Þ

This formula gives values that are approximately
ffiffiffi

2
p

larger than
that of the period obtained by Nof and Paldor (1), because there
are only one narrow tube and one chamber of compressed air ⁄ gas
so there is less of a restoring force and, consequently, the water
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moves more slowly. When the forcing is at the above period, the
pressure at the gas-filled chambers, P̂g=Lva (where P̂ is the undis-
turbed pressure), goes to infinity (i.e., Am1 and Am2 become infi-
nitely large). It is this infinite increase in pressure that, we argue,
might have caused the collapse. Note that, practically, g ranges
from almost zero in the beginning of the resonance process to the
full extent of the gas pockets when resonant takes hold. For most
Florida caves, this maximum length might be as high as � O
(10 cm) or several meters.

We shall now consider the case (Fig. 7) applicable to the Indian
Spring’s cave dimensions. Given the simplifications in the model, it
is, of course, very hard to pick up values for the various parame-
ters, but some rough guesses can be made. Accordingly, suppose
that the ceiling of the cavern ⁄cave where the pocket was identified
(Figs 4 and 5) is about 5 m below the water elevation in the spring
run (typical decompression depth) that the length of the compressed
gas pocket (Lva) is 0.5 m and that the combined length of the
cavern ⁄ cave and vertical tubes (D + Lvw + Lhw) is 50 m. For these
values, the period is about 4.5 sec, which is of the same order as
the time elapsing between two consecutive breaths of a typical
diver during decompression. We see therefore that the forcing per-
iod corresponding to resonance (i.e., the pressure in a typical cave
becomes infinitely large) is comparable to the natural breathing per-
iod of divers in the cave.

Results—The Mudslide

As mentioned previously, we suggest that resonance caused an
uncontrollable pressure rise within the pocket, leading to a breakup
of the limestone surrounding the pocket. A massive amount of bro-
ken rock then fell on the steeply sloping bottom below. Given the
high slope of the bottom (�30�), it was probably only marginally
stable to begin with, so upon impact with the broken rock, a mud-
slide occurred. A lens-like feature was carved out of the slope turn-
ing into a turbidity current downhill (after some dilution). Owing
to its origin, that turbidity current had also the shape of a lens that
slid downhill. (By ‘‘lens’’ we mean a topological feature having
zero thickness along its rim, which is a closed contour. For simplic-
ity and analytical tractability, we shall shortly take the lens to be of
infinite extent in the direction perpendicular to the cave, i.e., the
top and bottom of the cave will be taken to be parallel slanting
planes.) The turbidity current height was probably higher than the
height of the Squaws Restriction, so it blocked it once encountering

it. The restriction effectively sliced the top of the turbidity lens off,
allowing for a smaller lens to continue propagating downstream
beyond the restriction.

There was probably never a complete blockage of the restric-
tion, which explains how Gavin managed to get out of the cave.
For all practical purposes associated with cave diving, however,
once the visibility went to zero (as it did in the case in question)
and the guideline was nowhere to be found (because it was bur-
ied in the avalanched sediment), then the restriction was effec-
tively blocked to the divers. Next, we shall estimate the speed of
the avalanche.

Consider the downhill propagation rate (C) of a two-dimensional
turbidity lens, that is, a lens (Fig. 4) with an infinite extend in the
long-slope direction situated between two parallel sloping planes
representing the cave floor and ceiling (whose distance from each
other is DW). The lens length, density, and height are L, (q + Dq),
and H, and its migration rate can be estimated from the balance
between the gravitational force and the form drag on the lens:

CDC2H � ag Dq=qð ÞHL Sin h ð3Þ

Here, CD is the form-drag coefficient for the lens, which is of
order unity and needs to be distinguished from the frictional drag
that is typically three orders of magnitude smaller. Alpha (a) is also
a coefficient of order unity, which has to do with the shape of the
lens. For parabolic lenses, it is 4 ⁄ 3 (see, e.g., Watts and Grilli [2,
Eq. 5]). Delta q is the density difference between the fluid corre-
sponding to the turbidity lens and the water without sediments, and
h is the slope angle (Fig. 4). Friction between the turbidity lens and
the material below it (Coloumb friction) is usually small (Watts
and Grilli [2]), so we neglect it too. It is important to realize that
the term representing the form drag (left-hand side of Eq. [3])
involves the lens height (H), not length. Also, note that as H � O
(LSinh), Eq. 3 is equivalent to the statement that the Froude num-
ber is of order unity, as should be the case.

In the ocean, where most underwater landslides have been
observed and studied (e.g., Jiang and LeBlond [3]), the ratio of
depth to length is roughly 1 ⁄100 (depth of the ocean and the length
of the continental rise or continental slope), so the turbidity currents
have that ratio too. By contrast, in the cave, that ratio is expected
to be more like 1 ⁄ 1 or 1 ⁄10. An interesting point to note here is
that, although the cave is typically much longer (kilometers) than
its height or width [� O (1–10) m], most caves consist of rela-
tively short and dynamically separated sections, which are bounded
by breakdowns or other abrupt changes in their configuration. In
the case in question, such a section is between the entrance and the
Squaws Restriction, which is roughly 100 m into the cave. The
cave is about 10–20 m in diameter, making the thickness ⁄ length
ratio 1 ⁄ 5–1 ⁄ 10.

The density load associated with a typical turbidity current is
50 kg ⁄ m3 (see, e.g., Hughes Clarke et al. [4]), so we will take
Dq ⁄qw = 0.05. Also, in view of the above, we will take H � 5 m,
L � 25 m, CD = 1.5, a = 4 ⁄ 3, h � 30�. Together with Eq. 3, these
choices give a fast propagation speed of 2.5 m ⁄ sec into the cave
(against the usual outgoing flow in the cave, which is typically no
more than 0.5 m ⁄ sec). Assuming that the restriction reduced the
lens size in half, we obtain that upstream of the restriction (i.e., fur-
ther into the cave), the lens propagation speed against the usual
current in the cave was about 1.8 m ⁄ sec.

How far could such a lens penetrate to? Assuming temporarily
that the cave would have not had any breakdowns or other changes
in configuration, it would have propagated until the sediment settles

FIG. 7—A top view of the basin and cave entrance showing the pocket,
initial cavity on the bottom and the surface vortex in the basin.
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out of suspension. We shall now calculate how far that is using
Stokes settlement formula for laminar flow

V ¼
gd2ðDqp=qwÞ

18m
ð4Þ

where V is the particle settling speed, d the particle size
(4 · 10)6 m for clay and 0.5 · 10)3 m for sand), Dqp the density
difference between an individual grain particle (sand or clay) and
the water (�2 g ⁄ cm3), and v is the kinematics viscosity
(10)6 m2 ⁄ sec). In our cave, the flow is obviously not laminar
because the Reynolds number (UH ⁄ v) is roughly 107 so the viscos-
ity is really an ‘‘eddy viscosity’’ rather than the laminar value given
above. But no turbulence measurements have ever been taken in a
submerged cave, so we do not know what value to pick. (In the
deep ocean, which is relatively calm, the value is an order of mag-
nitude higher, 0.1 cm2 ⁄ sec.) Because the turbulence keeps particles
in suspension longer than they would be kept in suspension other-
wise (i.e., in laminar flow), the Stokes formula would give us an
upper bound on the particles’ settlement speed and lower bound on
the penetration distance.

For sand, the above formula together with the adapted choices of
parameters gives a settlement speed of �0.2 m ⁄ sec, whereas for
clay, it gives �2 · 10)5 m ⁄ sec. Silt would be in between the two.
This means that for the particles to settle out of the 5-m-thick lens
it would take between 25 sec (sand) and 3 days (clay). Silt would
sink in several hours. This, in turn, means that, without obstructions
and with no turbulence in the water, the lens would have propa-
gated at least 50 m (where the sand would settle) and at the most
500 km (where the clay would settle). Silt would have probably
penetrated several kilometers. It is therefore not surprising that
Gavin saw sediments 400 m into the cave.

As already alluded to in the introduction, the fact that the sedi-
ment was observed on the bottom 300 m into the cave does not
at all mean that the entire flow within the cave reversed direction.
Just like any other lock-exchange problem (see, e.g., Shin et al.
[5], Bombardelli et al. [6]), while the turbidity current itself
advances downhill on the floor, the clear water above it flows in
the opposite direction (uphill), compensating for its volume flux
so that there is no net flow downhill or uphill ahead of the tur-
bidity current head (Fig. 4). Given that the minimum thickness
above the turbidity current is (Dw ) H), where Dw is the cave
thickness, we find that the maximum uphill speed directly above
the lens is roughly CH ⁄ (Dw ) H), giving about 0.5 m ⁄ sec for
Dw � 20 m.

Results—The Vortex in the Basin

We shall now explain the vortex and the sudden drop in
water level observed by the surface support personnel. During
the second stage of the collapse, when the cavity in the sloping
bottom sediment has just been formed, water from somewhere
else must rush in to replace its space that is now empty. This
water could have come from the spring itself, but evidently, this
source could not provide a large enough volume quickly enough.
The basin above is another potential source, and apparently, this
is where the water came from. Just like water draining in a
bathroom sink, such a flow tends to spiral in because even a
tiny initial orbital flow (Vh) present near the periphery of the
sink is dramatically magnified when the outlet is reached. This
is because of the familiar conservation of angular momentum,
which implies

d

dt
ðrVhÞ ¼ 0 ð5Þ

where r is the radius. Relation (Eq. [5]) states that any fluid parti-
cles that approach the center (r fi 0) from a region away from
the center have a forever-increasing orbital velocity. This created
the vortex that the surface support personnel apparently saw
(Fig. 7). It lasted for only a short time (a few minutes at the most)
until the cavity space was filled with basin water. At this point, the
reversed flow from the basin into the cavern ceased.

Note that the net volume of the cave (i.e., the volume of the
space confined by solid media) has not changed because of the
mudslide. The mud associated with slide merely changed its posi-
tion from the cavity on the floor to the mud contained in the lens-
like turbidity current (Fig. 4). Consequently, while basin water was
drawn into the cave to fill the cavity, other water must have been
expelled out of the cave into the basin. Therefore, the basin level
did not change as a result of this process, which formed a (tempo-
rary) asymmetrical horizontal dipole. Note that, although the expul-
sion involved the same amount of fluid as the inflow, it must have
involved a much weaker flow (and, hence, less noticeable). This is
because it was associated with a divergent flow on the surface
rather than a convergent flow.

A short time after the slide (minutes), the mudslide lens reached
the restriction and blocked most of the flow coming out of the
cave. Meanwhile, on the surface, the basin’s outlet downstream
continued to flow, and this lowered the water level in the basin.
Taking the surface area of the pool to be 100 · 100 m2 and the
flow out of the cave to be 5 m3 ⁄ sec, we find that the basin had
been lowered by 0.5 m in just 17 min. While this was taking place,
the hydrostatic pressure behind the restriction continued to build up
within the limestone until there was enough of it to force the sedi-
ment out of the partially blocked restriction. At this point, the cave
started clearing itself up so to speak.

Discussion

This is an attempt to bring two different fields, forensic science
and fluid dynamics, into one frame of mind. It is not obvious to us
how successful we were in achieving a breakthrough, but we did
succeed in explaining the events that led to the collapse of the
Indian Spring cave and the drowning of Parker Turner. As in Nof
and Paldor’s study (1), we argue that the whole process started by
resonance in one of the air ⁄ gas pockets typically present in most
caves visited by cave divers (Figs 3–6). In contrast to Nof and Pal-
dor’s study (1), however, we identified the pocket occupied by one
of the divers decompressing in the cavern (Fig. 5). Obviously, that
diver could have not possibly known about the resonance that we
are alluding to.

We distinguish between four different stages of the collapse.
During the first (or initial) stage, a resonance is established in the
pocket, the pressure rises uncontrollably, and the limestone in the
immediate vicinity of the pocket breaks (Fig. 4, left side). During
the second stage, broken debris fell on the slope below. This
caused the mud to slide, creating an initial cavity in the sloping
bottom (Fig. 4, left side). In the third (or intermediate) stage, the
sediment initially contained in the cavity gets diluted with fresh
water and establishes a lens-like turbidity current. This current then
rushes quickly downhill, blocking most of the restriction shortly
afterward (Fig. 4, central part). In the fourth (terminal) stage, the
smaller lens-like turbidity current (whose top was effectively
‘‘sliced off’’ by the restriction) propagates more slowly downhill
(Fig. 4, right side).
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Eq. 2 was used to calculate the periodicity associated with the
resonance. It is about 40% larger than the value calculated by Nof
and Paldor (1), which is still very relevant to the problem at hand
because of the simplifications involved. The main difference
between the two is attributable to the basin serving as one of the
U-tube arms. (The periods that we present in the Nof and Paldor’s
study [1] and here are actually the same because the identified
pocket was deeper than the pockets considered in the Nof and
Paldor’s study [1].) We then used Eq. 3 to calculate the speed that
the mudslide migrated downhill and found it to be roughly
2.5 m ⁄ sec. The clear water above the mudslide moved in the oppo-
site direction at approximately 0.5 m ⁄ sec, so there is no net flow
upstream ahead of the turbidity current.

With the aid of Eq. 4, we then estimated how long would such
a turbidity current last before the sediments (sand, silt, and clay)
settle out of it. Using this information, we then showed that it
could penetrate large distances into the cave (kilometers, had there
been no obstacles). With this scenario, there was never a complete
flow reversal where water rushed into the cave instead of rushing
out. There was, however, a brief period (minutes) when basin water
rushed into the cave to fill in the space created by the mudslide
that detached from the bottom. This flow created the surface vortex
observed by surface support personnel (Fig. 7). A weak current
exiting the cave and carrying the same volume compensated for it,
so the mudslide did not create any net flow.

In both the resonance and mudslide calculation, we have
ignored the preexisting current within the cave, assuming that as
our processes are linear, this flow can simply be superimposed
on our calculated flows. A reviewer of Nof and Paldor’s study
(1) asked about the relationship between the two flows, and we
erroneously answered at the time that the resonance flows within
the cave are much faster than the preexisting flows. We realized
later that this is incorrect—only the resonating flows within the
narrow vertical tube are faster, and the corresponding flows
within the cave itself are actually smaller. Still, however, the
superposition argument holds. We hope that this study will
encourage further investigations involving more accurate and
detailed calculations.
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Appendix—List of Symbols

Da – Diameter of the pocket in the upper regions of the cavern (m)
Dw – Diameter of the cavern (m)
Lva – Length of the air mass in the pocket (m)
Lvw – Length of the water column in the pocket (m)
Lhw – Length of the cavern (m)
L – Turbidity lens length (m)
H – Turbidity lens height (m)
D – The basin depth (m)
g – Water level elevation from its neutral position (m)
d – The particle size (m)
Am1, Am2 – Amplitudes (m)
r – Radius (m)
Aa – Cross-sectional area of the pocket in the upper regions of the

cavern (m2)
Aw – Cross-sectional area of the cavern (m2)
Awc – Vertical cross-sectional area of the cave (m2)
Awb – Horizontal cross-sectional area of the basin (m2)
P̂ – Excess pressure (N ⁄m2)
F – Force (N)
m – Mass (kg)
O – The order of
qw – Water density (kg ⁄ m3)
q – Density of fluid causing turbidity (sediment) (kg ⁄ m3)
Dq – The density difference between the fluid corresponding to the

turbidity lens and the water without sediments (kg ⁄ m3)
Dqp – The density difference between an individual grain particle

(kg ⁄ m3)
v – The kinematics viscosity (m2 ⁄ sec)
g – Gravitational acceleration (m ⁄ sec2)
V – Particle settling speed (m ⁄ sec)
Vh – Orbital flow velocity (m ⁄ sec)
a – Acceleration (m ⁄ sec2)
V̂ – Volume of the air pocket (m3)
t – Time (sec)
x – Frequency (per sec)
T – Period (sec)
h – Slope angle (�)
CD – Drag coefficient
C1, C2 – Constants
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